

SAFETY TESTING LABORATORY: TEST REPORT

ISO 80601-2-69:2020

Medical electrical equipment

Part 2-69: Particular requirements for basic safety and essential performance of oxygen concentrator equipment.

Test Report No. : SWEN/21-22/265-01

ULR No. & Discipline : TC63302200000177P / ELECTRONICS

Job No. : 265-1

Date of Issue of Report : 17th March 2022

Date of Sample Received : 1st March 2022

Date of Testing : (2nd March 2022) to (10th March 2022)

Testing Location : LABORATORY / ON-SITE

SWEN KONFORMITY

Name & Address of Testing Location Gokul RH-01, Survey no. 22, Near Chatrapati co-op

bank, Vishal Nagar, Pimple Nilakh, Pune-411027,

Maharashtra (India)

Trade mark of manufacturer : VENIURE

Entrepreneurship Development Center

Name & Address of Customer : 100, NCL Innovation Park, Dr. Homi Bhabha Road

Pune - 411008

Customer Representative : Mr. Anjan Kumar N

Sample Description : **Portable Oxygen Concentrator**

Condition Of Sample : OK

Reference standard : IEC 60601-1:2005+A1:2012+A2:2020

Model / Type / Reference : K10WD

Serial No. / I.D No : EDC21100901

Ratings : 220-230 V a.c, 5 A

Test Method (Type/Routine/Verification) : Type test

Ambient Temperature & Humidity : 27.3°C & 47% RH

Atmospheric pressure and Altitude : 945hPa & 560m

Remarks: This report is governed by, and incorporates by reference, the condition of testing as posted as its date of issuance and is intended for your exclusive use. Any copying or replication of this report to or for any other person entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth solely our findings with respect to the test samples identified herein. It includes all of the tests and all results thereof based upon the information that you provided us with. You have 10 calendar days from the date of issuance of this report to notify us of any material error or omission; provided, however, that such notice shall be written and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. The test report can also be received and checked for authenticity from website: www.swenlab.com. Annex-A of this test report is as per NABL accredited scope.

Test Report No: SWEN/21-22/265-01 Format No: F-04 Page No: 1 of 13

Possible test case verdicts:

Test does not apply to the test object	: N	/A.
--	-----	-----

- Test object does not meet the requirement...... Fail/ NOT OK

General remarks:

- **"See form A. ##"** refers to additional information related to test conducted.
- "See Table ##" refers to a table appended to this report.
- "See Fig. ##" refers to a figure appended to this report.
- "Appendix. ##" refers to list of figures.

Units of Measurements:

- V Voltage.
- A Ampere.
- Ω Ohm.
- Hz Frequency
- m Meter
- °C Degree Centigrade
- %RH Relative Humidity
- hPa Hectopascal

Abbreviations:

- R Resistance.
- T Temperature
- m Meter
- Hrs. Hours
- EUT Equipment under test
- Annex A- Test under scope of NABL Accreditation.
- Annex B- Test under scope of Non NABL Accreditation

Equipment's used for Testing:

Sr No.	Instrument Name	Make	Sr. No.	Range	L.C.	Calibration Due Date
1.	Humidity cum temperature chamber	Tech-Mark services	SK1011	(-10 - 130)°C (ambient-96)%RH	0.1°C 1%	01/03/2023
2.	Thermo hygrometer	HTC instruments	SWEN/EQ-03	(-50-70)°C (10-99)%RH	0.1°C 1%	09/08/2023
3.	Digital Multimeter	Fluke	25339389	(0-600) Va.c./Vd.c.	0.1Va.c./Vd.c.	09/08/2023
4.	Altimeter/ Barometer	HTC Instruments	AL- 7010	Altimeter- (-700 – 9000)m Barometer(300-1100)hPa	1 m 1 hPa	30/03/2022
5.	Digital Clamp meter	Rishabh	012805	(0 to 99.9)% THD	0.1%	19/01/2024
6.	Leakage Current tester	ніокі	150215883	DC / AC :50μA/500 μA/5 mA/50 mA	0.01μΑ	09/07/2023
7.	AC power Source	GW - Instek	GER 200870	(0 to 310) V a.c.	0.1 V a.c.	23/01/2023
8.	Flow Analyzer with oxygen sensor	TSI	40882030027	Oxygen Concentration(21 to 100)% Volume(0.01 to300)L Pressure (-25 to 150.0)cm H ₂ O	Oxygen Concentration 0.1% Volume-0.01L Pressure –	30/03/2022

Test Report No: SWEN/21-22/265-01 Format No: F-04 Page No: 2 of 13

		0.001 cm H ₂ O	

General Product Information: (Product information below are provided by the customer)

An oxygen concentrator is an electrically operated device intended to provide supplemental low flow oxygen therapy. The unit separates oxygen from ambient air, delivering high quality purified oxygen to patients.

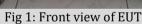


Fig 2: Back view of EUT

Test Report No: SWEN/21-22/265-01 Format No: F-04 Page No: 3 of 13

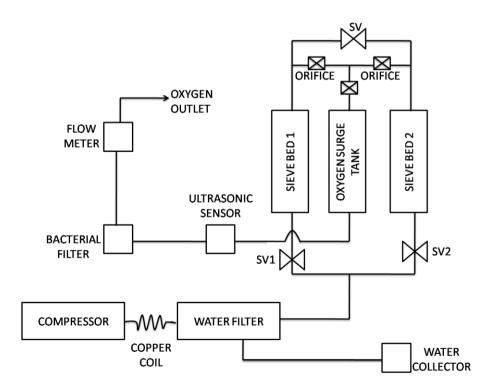
Fig 3: RHS view of EUT

Fig 4: LHS view of EUT

<u>Bill of Material (Marking Critical Components):</u> (Product information below are provided by the customer)

Sr. no	List of Materials					
Hardwar	Hardware materials					
1	Solenoid valves					
2	Socket connector					
3	Silencer					
4	Push-in fitting					
5	Push-in T-fitting					
6	Pressure transmitter					
7	Connecting cables					
8	Non-return valves					
9	Plastic tubing					
10	Multi-tube holder					
11	Push-in/threaded L-fitting					
12	Push-in Y connector					
13	Push-in T connector					
14	Push-in L-connector					
15	Low Pressure regulator					
16	Canisters <u>Aluminium</u> - Set (two canisters + oxygen tank)					
17	Orifice					

14	Push-in L-connector
15	Low Pressure regulator
16	Canisters <u>Aluminium</u> - Set (two canisters + oxygen tank)
17	Orifice
18	Copper coil
19	Aluminium extrusions
20	Corner brackets
21	Hammer headed nuts and screws
22	Wheels + Locking
23	Springs - 2 for canisters
24	Rubber pads
25	PU Tubing
26	C Clamps
27	Sheet metal/aluminium composite
28	Flow meter + Humidifier bottle
29	Silicon tubing
30	Double hose connector


Test Report No: SWEN/21-22/265-01 Format No: F-04 Page No: 4 of 13

Filters	Filters					
Sr. no	List of Materials					
1	Hepa filters (Compressor Inlet)					
2	Bacterial filter (oxygen outlet)					

Electroni	Electronics				
Sr. mo	List of Materials				
1	Mchs				
2	Fars				
3	GSM Module				
4	Wires				
5	Controller				
7	SMPS				
8	Ultrasonic Sensor- Oxygen sensors				
9	Compressor				
10	STM controller				

<u>Circuit Diagram of EUT:</u> (Product information below are provided by the customer)

Annex - A

1. Humidity Preconditioning

Standard & Clause No	ISO 80601-2-69 (Clause 201.5) IEC 60601-1 (Clause 5.7)	
Equipment Used & its Range	Temperature cum Humidity Chamber (-10 °C to 130) °C – Temperature (Ambient to 96)% - Humidity	
Uncertainty	☐ Included in Test Report ☑ N/A ☐ Not Included in Test Report	
Date of Performance	2 nd March 2022 to 4 th March 2022	
Ambient Temperature (°C)	(26.8-27.5)	
Ambient Humidity (%RH)	(38-50)	

Clause No	Test Description				Verdict	
201.5 5.7	Table: General requirements for testing of ME equipments Humidity Preconditioning			ок		
J.7	Trumuity Trecondition	oming	j			
Conditions fo	r the preconditioning	:				
Humidity Rar	nge	:	93 % ± 3 %	Set humidity	:	(93±3)%RH
Temperature	Range	:	(20 to 30)°C	Set temperature	:	(28±2)°C
Total Time		:	48 Hr			
Supplementa	ry Information:-					
Humi-Temp						
			20	∏ •c		

Fig 1A: Test Conditions

2.1. Leakage Currents and Patient Auxiliary Currents

Standard & Clause No	ISO 80601-2-69 (Clause 201.8) IEC 60601-1 (Clause 8.7, 8.7.1, 8.7.3 & 8.7.4.5)
Equipment Used & its Range	HIOKI – Leakage Current Tester – ST 5540 AC :50 μA/500 μA/5 mA/50 mA DC : 50 μA/500 μA/5 mA/50 mA
Uncertainty	☐ Included in Test Report ☐ N/A ☐ Not Included in Test Report
Date of Performance	4 th March 2022
Ambient Temperature (°C)	28.2
Ambient Humidity (%RH)	54

Clause No	Test Description	Verdict
201.8	Table: Protection against electrical HAZARDS from ME EQUIPMENT	
8.7	Leakage Currents and Patient Auxiliary Currents	OIZ
8.7.1	General requirements OK	
8.7.3	Allowable values	
8.7.4.5	Measurement of the EARTH LEAKAGE CURRENT	

			Comment
Input Voltage	:	252.7V a.c	Management and language gurmonts are larger
Line – Ground Voltage	:	251.3V a.c	Measured earth leakage currents are lesser than 5mA & 10mA in Normal & Single Fault
Neutral – Ground Voltage	:	2.2 V a.c	conditions respectively.
Frequency	:	50 Hz	conditions respectively.

	Normal (Condition	Single Fault Condition (Line):		
	Polarity :Normal	Polarity : Reverse	Polarity:	Polarity:	
Item/Location	(mA)	(mA)	Normal (mA)	Reverse(mA)	
Earth leakage current	0.90	0.93	1.58	1.58	

NOTE – *The measurement is done for 10 s.* Supplementary information:

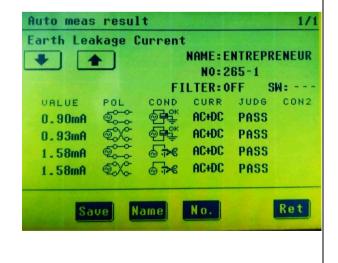


Fig 2.1 A:Test Setup Fig 2.1 B:Test result

2.2 Leakage Currents and Patient Auxiliary Currents

Standard & Clause No	ISO 80601-2-69 (Clause 201.8) IEC 60601-1 (Clause 8.7, 8.7.1, 8.7.3 & 8.7.4.6)
Equipment Used & its Range	HIOKI – Leakage Current Tester – ST 5540 AC :50 μ A/500 μ A/5 mA/50 mA DC : 50 μ A/500 μ A/5 mA/50 mA
Uncertainty	☐ Included in Test Report ☑ N/A ☐ Not Included in Test Report
Date of Performance	4th March 2022 & 10th March 2022
Ambient Temperature (°C)	28.2
Ambient Humidity (%RH)	54

Clause No	Test Description					Verdict
201.8 Table: Protection against electrical HAZARDS from ME EQUIPMENT						
	Leakage Currents and Patient Auxiliary Currents					
8.7.1 Genera re	quirements		•			OK
87.3 Allowable	values					
8.7.4.6 Measurer	nent of the T	OUCH CUR	RENT			
				Comm	ent	
Input Voltage	: 2	52.7V a.c	Managed and and the state of th			
Line – Ground Voltage	: 2	51.3V a.c	Measured values of touch current are lesser			
Neutral - Ground Voltage	: 2	.2V a.c	than 100 μA 500 μA in Normal & Single fault conditions respectively.			igie iauit
Frequency	: 5	0 Hz	conditions respectively.			
	Normal C	ondition			e Fault on (Line) :	
Item/Location	Polarity:	Polarity:	Polarity:	Polarity:	Polarity :	Polarity:
	Normal	Reverse	Normal	Reverse	Normal	Reverse
	(μA)	(μA)	(μA)	(μA)	(μA)	(μA)
Enclosure to Earth	9.4	9.6	269.5	302.0	9.5	9.3
Enclosure to Enclosure	4.0	4.2	4.4	4.0	4.4	4.5

NOTE - The measurement is done for 10 s.

Supplementary information:

Note: Enclosure to Earth Leakage current test values are of the retesting done on 10th March 2022 after some time essential modifications done by client.

Test Report No: SWEN/21-22/265-01 Format No: F-04 Page No: 8 of 13

<u> Annex - B</u>

3. Accuracy of continuous flow rate

Standard & Clause No	ISO 80601-2-69 (Clause 201.12.1.101)		
	Flow analyzer		
Equipment Used & its Range	Oxygen concentration (21to 100)%		
Equipment osed & its Kange	Volume (0.01 to 10)L		
	Pressure(-25.0 to 150.0)cmH20		
	☐Included in Test Report		
Uncertainty	N/A N/A		
	Not Included in Test Report		
Date of Performance	10 th March 2022		
Ambient Temperature (°C)	28.2		
Ambient Humidity (%RH)	54		

Clause No	Test Descripti	Verdict			
201.12.1.101 Table	: Accuracy of continuous flow	Accuracy of continuous flow rate			
		Comment			
Input Voltage	: 230 V a.c.	Measured flow rate of delivered gas was			
Maximum flow rate	: 7 LPM within ±10% of indicated flow r		l flow rate or ±		
		200ml/min whicheve	r is greater		
Equipment	Dorgantaga flavu vata (0/)	Measured flow rate			
Equipment	Percentage flow rate (%)	(Lpm)			
	20%	1.27			
EUT	50%	3.32			
	100%	7.61			

Supplementary information:

Note: Accuracy of continuous flow rate was retested on 10th March 2022 by considering digital display as the reference of flow indication. The test conducted after modification of resolution of flow from 1LPm to 0.1Lpm by client side.

KOKILA K10WD
Oxygen Concentrator

SLPM 1.4

1001 RUNNING

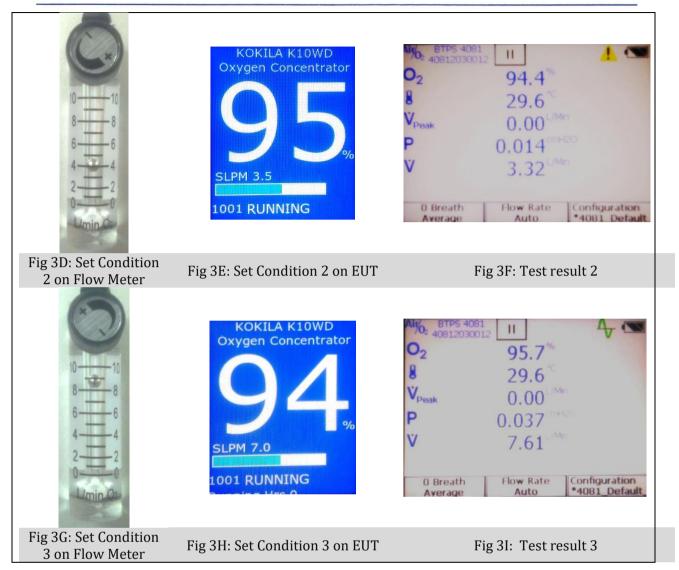

Fig 3A: Set Condition 1 on Flow Meter

Fig 3B: Set Condition 1 on EUT

Fig 3C: Test result 1

Test Report No: SWEN/21-22/265-01 Format No: F-04 Page No: 10 of 13

4. Accuracy of concentration

Standard & Clause No	ISO 80601-2-69 (Clause 201.12.1.103)		
	Flow analyzer		
Equipment Head & its Dange	Oxygen concentration (21to 100)%		
Equipment Used & its Range	Volume (0.01 to 10)L		
	Pressure(-25.0 to 150.0)cmH20		
	☐Included in Test Report		
Uncertainty	⊠ N/A		
	□Not Included in Test Report		
Date of Performance	4 th March 2022		
Ambient Temperature (°C)	28.4		
Ambient Humidity (%RH)	52		

Clause No		Test Descrip	otio	n	Verdict	
100020001,0000						
201.12.1.103 Table	e : Accuracy of c	oncentration			OK	
Nominal mains voltage		230V a.c. Maximum flow rate		ximum flow rate	: 7 LPM	
85 % Of Minimum Rate	_	187 V a.c.				
110% Of Maximum Rat	ted Voltage :	253 V a.c.				
Frequency	:	50Hz				
	Measured	0_2		Declared O ₂		
Testing condition	flow rate	Concentrati	on	Concentration	Comment	
	(Lpm)	(%)		(%)		
85% of Minimum	6.98	93.1			Measured oxygen concentration in the	
Rated Voltage	0.50	70.2				
110% of						
Maximum Rated	7.03	95.4				
voltage						
	1.18	93.6		93% ± 3%	delivered gas is within	
	2.07	92.9		9370 ± 370	limits as per stated by manufacturer in the IFU.	
Nominal mains voltage	3.08	93.9				
	4.05	94.4				
	4.98	95.1				
	6.03	95.0				
	7.08	95.2				
Supplementary informati	on:					

Test Report No: SWEN/21-22/265-01 Format No: F-04 Page No: 12 of 13

Copy of marking plate:

Specifications

KOKILA - Portable Oxygen Concentrator

Model No K10WD

Serial No. EDC21100901

Power consumption < 750 W at 10LPM

Voltage: 220-240 V AC at 50Hz

Date of Manufacture: December 2021

Made in India

Tested By: Akash Chavan

(Testing Engineer)

Acres

Tested By: Vinay Kumar (Assistant Testing Engineer)

D.Moay

Approved By: Amiya Sagar (Technical Manager)

Wash A STATE OF THE STATE OF TH

END OF TEST REPORT

Test Report No: SWEN/21-22/265-01

Format No: F-04

Page No: 13 of 13